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This paper proposes novel accuracy improvement and high speeding techniques for double layer charge (DLC) formulation in 

shielding problems. Although the DLC formulation has advantages over the direct methods from the viewpoint of computational cost, 

the calculation accuracy can be worse because of cancellation errors. In order to improve the accuracy, we apply a new technique 

based on difference field concept to the DLC formulation. In addition, we succeed in shortening a calculation time by simplifying the 

DLC formulation. Numerical results which verify the effectiveness of the proposed methods are presented. 

 
Index Terms— Difference magnetic field, double layer charge, integral equations, magnetic shielding, magnetostatics. 

 

I. INTRODUCTION 

IGH aspect ratio models such as magnetic shields are not 

easy to analyze accurately by the finite element method. 

On the other hand, they can be analyzed accurately by the 

direct boundary element method (BEM) although requiring 

high computational costs. Therefore the use of indirect BEMs, 

which contain almost half the number of unknown variables 

compared with the direct BEM, is suitable for shielding 

problems. In particular, the double layer charge (DLC) 

formulation is one of the most effective methods because its 

accuracy is better than other indirect BEMs in most cases [1]. 

However, the computational accuracy of the magnetic field in 

the shielding space calculated by the indirect BEMs is not 

good because of cancellation errors regardless of their shapes 

and the use of the Galerkin or collocation method [2]. It was 

reported that the accuracy of the DLC formulation can be 

improved by using the direct BEM as the postprocessing [2]-

[3] although using two types of BEMs is complicated. So in 

this paper, we apply the difference field concept which is used 

in the single layer formulation [4]-[6] to the DLC formulation.  

We also halve the number of unknowns of the DLC 

formulation by utilizing a characteristic of shielding model 

without losing the accuracy. 

II. NUMERICAL METHODS 

A. Double Layer Charge Formulation 

The DLC formulation for linear media [1]-[3] is given as 
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where d is the magnetic double layer charge, φHe is the 

potential made by exciting current, μ0 is the permeability of 

free space, r and r’ denote observation and integration 

positions, respectively. The relative ratio  is defined as  

=ri / ro, where ri and ro are the permeability of inner and 

outer region of magnetic material, respectively in case of 

shielding model. Ω(r) is the solid angle subtended by the inner 

region at r and n is the unit outward normal vector from the 

inner region with ri to the outer region with ro. d is 

approximated by a linear function. Equation (1) is discretized 

by using a collocation approach with a triangular surface 

mesh. 

The magnetic flux density B at any point is given as 

     ,rBrBrB ed    (2) 

where Be is exciting magnetic flux density and Bd is the 

magnetic flux density produced by d. 

B. Difference Field Concept for DLC formulation in 

Shielding model 

For simplicity, we discuss single layer magnetic shields as 

an example. Generally, the direction of Be is reverse to that of 

Bd in (2) in the shielding space. As  increases, B inside the 

shielding space approaches 0. In other words, the order of the 

magnitude of B becomes quite different from that of Be and 

Bd in (2), and the cancellation errors become larger. In the 

following, we explain how to avoid large cancellation errors 

by using the difference field concept. 

When =∞, (1) is represented as 
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Here, we define d as d = d −d
∞
. Substituting the left-

hand side of (3) into the right-hand side of (1), and simplifying 

the equation, we obtain 
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When =∞ B inside the shielding space is 0 and from (2) 

B
∞
d+ Be=0 with B

∞
d produced by d

∞
. Thus the magnetic 

flux density inside the shielding space Bin is represented as 
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where Bd_out and Bd_in denote B produced by d on the outer 

and inner boundaries of the shielding material, respectively, 

and also Bδd_out and Bδd_in denote B produced by δd on the 

outer and inner boundaries, respectively. When  is large, 

Bd_out and B
∞
d_out are almost the same. Therefore, the order 

of the magnitude of Bδd_out is much smaller than that of 

Bd_out. The same discussion holds true for Bδd_in. Thus as 

indicated in (5), the large cancellation errors can be avoided. 

H 



C. Simplification Technique for DLC Formulation 

When the shielding materials are really thin and is large, 

the difference of the magnetic scalar potentials on the outer 

and inner boundaries is obviously small. Then distribution of 

d becomes almost the same on the outer and inner 

boundaries. In this case, the difference of d is also very small. 

Utilizing this feature the number of unknowns of the DLC 

formulation can be halved as shown in Fig. 1. 

 
Fig. 1. Simplifying the matrix of the DLC formulation.. 

III. NUMERICAL RESULTS AND DISCUSSIONS 

To confirm the effectiveness of the proposed method, we 

analyze a spherical shell model in a uniform magnetic field of 

100 A/m, where the inner radius a1 is 4.9 cm and outer radius 

a2 is 5.0 cm. We evaluate the magnetic field H using the direct 

BEM-based postprocessing, the difference field concept and 

their simplified versions. Then we compare the computed 

values Hc with theoretical ones Ht and show relative errors in 

Fig.2, where the relative error is defined as |Hc-Ht|/Ht. In 

addition, to investigate the applicable scope of the 

simplification technique, we vary a1 from 2.5 cm to 4.9 cm 

when =1000. The results are shown in Fig. 3. Figs. 2 and 3 

show the average of the relative errors of H inside the inner 

boundary (i.e., shielding space). The rectangle and triangle 

plots denote the results by the DLC formulation with the direct 

BEM-based postprocessing and the DLC formulation based on 

the difference field concept, respectively. The open symbols 

correspond to the results of their simplified methods. We 

divided the surface of the single layer shield into 2400 

elements and 1204 nodes. The number of unknowns of each 

method is shown in Table I. In Table I, the 1
st
 step stands for 

solving (1) or (3) and the 2
nd

 step stands for solving the direct 

BEM formulation or (4). 
TABLE I 

NUMBER OF UNKNOWNS OF EACH METHOD 

 
DLC_post-

processing 

simplified 
DLC_post-

processing 

DLC_difference 

field 

DLC_simplified 

difference field 

1st step 1204 602 1204 602 

2nd step 602 602 1204 602 

 

In Fig. 2, when the large cancellation errors occur 

in the DLC formulation. We can avoid those errors by using 

the difference field concept. On the other hand, the accuracy 

by the difference field concept is a little worse than the direct 

BEM-based postprocessing because of the small cancellation 

errors. We can also confirm that the number of unknowns of 

the DLC formulation can be halved with keeping the adequate 

accuracy. 

As seen in Fig. 3, the simplification technique is effective 

when the thickness of the shielding material is within about 

1/10 of the outer radius in this numerical example. 

 
Fig. 2. Averaged relative error of computational results versus . 

 
Fig. 3. Averaged relative error of computational results when a1 varies from 

2.5 cm to 4.9 cm. 

IV. CONCLUSION 

Our results indicate we can avoid the large cancellation 

errors in shielding problems by applying the difference field 

concept to the DLC formulation. Also, we can halve the 

number of unknowns of the DLC formulation with keeping the 

adequate accuracy in the case of thin shielding models. From 

the view point of the computational costs, the use of the 

difference field concept with simplification technique is very 

effective when the thickness of the shielding material is 

sufficiently thin. 

In the fullpaper, we will investigate the scope of the 

simplification tachnique in more detail. We will also analyze 

more practical shielding problems. 
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